Typesetting Math in Texts
21 Nov 2015Basic math
Whenever you typeset mathematical notation, it needs to have “Math” style. For example: If \(a\) is an integer, then \(2a+1\) is odd.
Superscripts and subscripts are created using the characters ^
and _
,
respectively: \(x^2+y^2=1\) and \(a_n=0\). It is fine to have both on a single
letter: \(x_0^2\).
If the superscript [or subscript] is more than a single character, enclose the superscript in curly braces: \(e^{-x}\).
Greek letters are typed using commands such as \gamma
(\(\gamma)\) and
\Gamma
(\(\Gamma\)).
Named mathematics operators are usually typeset in roman. Most of the standards are already available. Some examples: \(\det A\), \(\cos\pi\), and \(\log(1-x)\).
Displayed equations
When an equation becomes too large to run in-line, you display it in a “Math” paragraph by itself.
\[f(x) = 5x^{10}-9x^9 + 77x^8 + 12x^7 + 4x^6 - 8x^5 + 7x^4 + x^3 -2x^2 + 3x + 11.\]The \begin{aligned}...\end{aligned}
environment is superb for lining up
equations.
To insert ordinary text inside of mathematics mode, use \text
:
This is the \(3^{\text{rd}}\) time I’ve asked for my money back.
The \begin{cases}...\end{cases}
environment is perfect for defining functions
piecewise:
Relations and operations
-
Equality-like: \(x=2\), \(x \not= 3\), \(x \cong y\), \(x \propto y\), \(y\sim z\), \(N \approx M\), \(y \asymp z\), \(P \equiv Q\).
-
Order: \(x < y\), \(y \le z\), \(z \ge 0\), \(x \preceq y\), \(y\succ z\), \(A \subseteq B\), \(B \supset Z\).
-
Arrows: \(x \to y\), \(y\gets x\), \(A \Rightarrow B\), \(A \iff B\), \(x \mapsto f(x)\), \(A \Longleftarrow B\).
-
Set stuff: \(x \in A\), \(b \notin C\), \(A \ni x\). Use
\notin
rather than\not\in
. \(A \cup B\), \(X \cap Y\), \(A \setminus B = \emptyset\). -
Arithmetic: \(3+4\), \(5-6\), \(7\cdot 8 = 7\times8\), \(3\div6=\frac{1}{2}\), \(f\circ g\), \(A \oplus B\), \(v \otimes w\).
-
Mod: As a binary operation, use
\[\begin{aligned} x &\cong y \mod 10 \\ x &\cong y \pmod{10} \\ x &\cong y \pod{10} \end{aligned}\]\bmod
: \(x \bmod N\). As a relation use\mod
,\pmod
, or\pod
: -
Calculus: \(\partial F/\partial x\), \(\nabla g\).
Use the right dots
Do not type three periods; instead use \cdots
between operations and \ldots
in lists: \(x_1 + x_2 + \cdots + x_n\) and \((x_1,x_2,\ldots,x_n)\).
Built up structures
-
Fractions: \(\frac{1}{2}\), \(\frac{x-1}{x-2}\).
-
Binomial coefficients: \(\binom{n}{2}\).
-
Sums and products. Do not use
\[\sum_{k=0}^\infty \frac{x^k}{k!} \not= \prod_{j=1}^{10} \frac{j}{j+1}.\] \[\bigcup_{k=0}^\infty A_k \qquad \bigoplus_{j=1}^\infty V_j\]\Sigma
and\Pi
. -
Integrals:
\[\int_0^1 x^2 \, dx\]The extra bit of space before the \(dx\) term is created with the
\,
command. -
Limits:
\[\lim_{h\to0} \frac{\sin(x+h) - \sin(x)}{h} = \cos x .\]Also \(\limsup_{n\to\infty} a_n\).
-
Radicals: \(\sqrt{3}\), \(\sqrt[3]{12}\), \(\sqrt{1+\sqrt{2}}\).
-
Matrices:
\[A = \left[\begin{matrix} 3 & 4 & 0 \\ 2 & -1 & \pi \end{matrix}\right] .\]A big matrix:
\[D = \left[ \begin{matrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{matrix} \right].\]
Delimiters
-
Parentheses and square brackets are easy: \((x-y)(x+y)\), \([3-x]\).
-
For curly braces use
\{
and\}
: \(\{x : 3x-1 \in A\}\). -
Absolute value: \(\vert x-y\vert\), \(\vert\vec{x} - \vec{y}\vert\).
-
Floor and ceiling: \(\lfloor \pi \rfloor = \lceil e \rceil\).
-
To make delimiters grow so they are properly sized to contain their arguments, use
\[\left[ \sum_{n=0}^\infty a_n x^n \right]^2 = \exp \left\{ - \frac{x^2}{2} \right\}\]\left
and\right
:Occasionally, it is useful to coerce a larger sized delimiters than
\[\left((x_1+1)(x_2-1)\right) = \bigl((x_1+1)(x_2-1)\bigl).\]\left
/\right
produce. Look at the two sides of this equation:I think the right is better. Use
\bigl
,\Bigl
,\biggl
, and the matching\bigr
, etc. -
Underbraces:
\[\underbrace{1+1+\cdots+1}_{\text{$n$ times}} = n .\]
Styled and decorated letters
-
Primes: \(a'\), \(b''\).
-
Hats: \(\bar a\), \(\hat a\), \(\vec a\), \(\widehat{a_j}\).
-
Vectors are often set in bold: \(\mathbf{x}\).
-
Calligraphic letters (for sets of sets): \(\mathcal{A}\).
-
Blackboard bold for number systems: \(\mathbb{C}\).
The text above is based on a paper by Edward R. Scheinerman1.
A few more examples from mathTeX tutorial2.
\[e^x=\sum_{n=0}^\infty\frac{x^n}{n!}\] \[e^x=\lim_{n\to\infty} \left(1+\frac xn\right)^n\] \[\varepsilon = \sum_{i=1}^{n-1} \frac1{\Delta x} \int\limits_{x_i}^{x_{i+1}} \left\{ \frac1{\Delta x}\big[ (x_{i+1}-x)y_i^\ast+(x-x_i)y_{i+1}^\ast \big]-f(x) \right\}^2dx\]Solution for quadratic:
\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]Definition of derivative:
\[f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\]Continued fraction:
\[f=b_o+\frac{a_1}{b_1+\frac{a_2}{b_2+\frac{a_3}{b_3+a_4}}}\]Demonstrating \left\{…\right.
and accents.
Overbrace and underbrace:
\[\overbrace{a,...,a}^{\text{k a's}}, \underbrace{b,...,b}_{\text{l b's}}\hspace{10pt} \underbrace{\overbrace{a...a}^{\text{k a's}}, \overbrace{b...b}^{\text{l b's}}}_{\text{k+l elements}}\]Illustrating array:
\[A\ =\ \left( \begin{array}{c|ccc} & 1 & 2 & 3 \\ \hline 1&a_{11}&a_{12}&a_{13} \\ 2&a_{21}&a_{22}&a_{23} \\ 3&a_{31}&a_{32}&a_{33} \end{array} \right)\]See Wikibook on LaTeX for more examples.